Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Clinical Immunology ; Conference: 2023 Clinical Immunology Society Annual Meeting: Immune Deficiency and Dysregulation North American Conference. St. Louis United States. 250(Supplement) (no pagination), 2023.
Article in English | EMBASE | ID: covidwho-20243635

ABSTRACT

Coronavirus disease 2019 (COVID-19) is a fatal pandemic viral disease caused by the severe acute respiratory syndrome corona virus type-2 (SARS-CoV-2). The aim of this study is to observe the associations of IL-6, SARS-COV-2 viral load (RNAemia), IL- 6 gene polymorphism and lymphocytes and monocytes in peripheral blood with disease severity in COVID-19 patients. This study was carried out from March 2021 to January 2022. RT-PCR positive 84 COVID-19 patients and 28 healthy subjects were enrolled. Blood was collected to detect SARS-COV-2 viral RNA (RNAemia) by rRT-PCR, serum IL-6 level by chemiluminescence method, SNPs of IL-6 by SSP-PCR, immunophenotyping of lymphocytes and monocyte by flow cytometry. Serum IL-6 level (pg/ml) was considerably high among critical patients (102.02 +/- 149.7) compared to severe (67.20 +/- 129.5) and moderate patients (47.04 +/- 106.5) and healthy controls (3.5 +/- 1.8). Serum SARS-CoV-2 nucleic acid positive cases detected mostly in critical patients (39.28%) and was correlated with extremely high IL-6 level and high mortality (R =.912, P < 0.001). Correlation between IL-6 and monocyte was statistically significant with disease severity (severe group, p < 0.001, and 0.867*** and critical group p < 0.001 and 0.887***). In healthy controls, moderate, severe and critically ill COVID-19 patients, IL-6 174G/C (rs 1800795) GG genotype was 82.14%, 89.20%, 67.85% and 53.57% respectively. CC and GC genotype had strong association with severity of COVID-19 when compared with GG genotype. Significant statistical difference found in genotypes between critical and moderate groups (p < 0.001, OR-10.316, CI-3.22-23.86), where CC genotype was associated with COVID-19 severity and mortality. The absolute count of T cell, B cell, NK cell, CD4+ T cells and CD8+ T cells were significantly decreased in critical group compared to healthy, moderate and severe group (P < 0.001). Exhaustion marker CD94/NKG2A was increased on NK cells and CD8+ cytotoxic T cell among critical and severe group. Absolute count of monocyte was significantly increased in critical group (P < 0.001). Serum IL-6, IL-6 174 G/C gene and SARS-CoV-2 RNAaemia can be used in clinical practice for risk assessment;T cell subsets and monocyte as biomarkers for monitoring COVID-19 severity. Monoclonal antibody targeting IL-6 receptor and NKG2A for therapeutics may prevent disease progression and decrease morbidity and mortality.Copyright © 2023 Elsevier Inc.

2.
Virol J ; 20(1): 120, 2023 06 12.
Article in English | MEDLINE | ID: covidwho-20242934

ABSTRACT

Science is digging for the varied presentation of COVID-19 patients exposed to the same risk factors, and medical conditions may be influenced by the presence of polymorphic genetic variants. This study investigated the link between ACE2 gene polymorphisms and the severity of SARS-CoV-2. This cross-sectional study recruited COVID-19 PCR-positive patients by consecutive sampling from Ziauddin Hospital from April to September 2020. DNA was extracted from whole blood, followed by gene amplification and Sanger's sequencing. Most of the patients, 77: 53.8%, were serious. Males were higher (80; 55.9%) with age more than 50 years (106: 74.1%). We found 22 ACE2 SNPs. rs2285666 SNP was most prevalent with 49.2% CC, 45.2% TT, 4.8% CT heterozygosity, and 0.8% AA genotypes. Variants with multiple genotypes were also insignificantly associated with the severity of COVID-19 in the analysis of the dominant model. Only rs2285666 had a significant statistical link with gender (p-value 0.034, OR; 1.438, CI; 1.028-2.011) while rs768883316 with age groups (p-value 0.026, OR; 1.953, CI; 1.085-3.514). Haplotypes ATC of three polymorphisms (rs560997634, rs201159862, and rs751170930) commonly found in 120 (69.77%) and TTTGTAGTTAGTA haplotype consisting of 13 polymorphisms (rs756737634, rs146991645, rs1601703288, rs1927830489, rs1927831624, rs764947941, rs752242172, rs73195521, rs781378335, rs756597390, rs780478736, rs148006212, rs768583671) in 112 (90.32%) had statistically significant association with the severity having p = value 0.029 and 0.001 respectively. Males of old age and diabetics are found to have more severe COVID-19 infection in the current study. We also found that common ACE2 polymorphism rs2285666 influences the susceptibility of acquiring the severe SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Male , Humans , Middle Aged , Angiotensin-Converting Enzyme 2 , Cross-Sectional Studies , Pakistan , Polymorphism, Single Nucleotide
3.
Front Immunol ; 13: 1094644, 2022.
Article in English | MEDLINE | ID: covidwho-2309812

ABSTRACT

Background: Approximately 13.8% and 6.1% of coronavirus disease 2019 (COVID-19) patients require hospitalization and sometimes intensive care unit (ICU) admission, respectively. There is no biomarker to predict which of these patients will develop an aggressive stage that we could improve their quality of life and healthcare management. Our main goal is to include new markers for the classification of COVID-19 patients. Methods: Two tubes of peripheral blood were collected from a total of 66 (n = 34 mild and n = 32 severe) samples (mean age 52 years). Cytometry analysis was performed using a 15-parameter panel included in the Maxpar® Human Monocyte/Macrophage Phenotyping Panel Kit. Cytometry by time-of-flight mass spectrometry (CyTOF) panel was performed in combination with genetic analysis using TaqMan® probes for ACE2 (rs2285666), MX1 (rs469390), and TMPRSS2 (rs2070788) variants. GemStone™ and OMIQ software were used for cytometry analysis. Results: The frequency of CD163+/CD206- population of transitional monocytes (T-Mo) was decreased in the mild group compared to that of the severe one, while T-Mo CD163-/CD206- were increased in the mild group compared to that of the severe one. In addition, we also found differences in CD11b expression in CD14dim monocytes in the severe group, with decreased levels in the female group (p = 0.0412). When comparing mild and severe disease, we also found that CD45- [p = 0.014; odds ratio (OR) = 0.286, 95% CI 0.104-0.787] and CD14dim/CD33+ (p = 0.014; OR = 0.286, 95% CI 0.104-0.787) monocytes were the best options as biomarkers to discriminate between these patient groups. CD33 was also indicated as a good biomarker for patient stratification by the analysis of GemStone™ software. Among genetic markers, we found that G carriers of TMPRSS2 (rs2070788) have an increased risk (p = 0.02; OR = 3.37, 95% CI 1.18-9.60) of severe COVID-19 compared to those with A/A genotype. This strength is further increased when combined with CD45-, T-Mo CD163+/CD206-, and C14dim/CD33+. Conclusions: Here, we report the interesting role of TMPRSS2, CD45-, CD163/CD206, and CD33 in COVID-19 aggressiveness. This strength is reinforced for aggressiveness biomarkers when TMPRSS2 and CD45-, TMPRSS2 and CD163/CD206, and TMPRSS2 and CD14dim/CD33+ are combined.


Subject(s)
COVID-19 , Quality of Life , Humans , Female , Middle Aged , Antigens, CD/metabolism , Receptors, Cell Surface/metabolism , Biomarkers , Serine Endopeptidases/genetics , Sialic Acid Binding Ig-like Lectin 3
4.
J Biomol Struct Dyn ; : 1-17, 2021 Aug 06.
Article in English | MEDLINE | ID: covidwho-2248559

ABSTRACT

In humans, the dimeric receptor complex IFNAR2-IFNAR1 accelerates cellular response triggered by type I interferon (IFN) family proteins in response to viral infection including Coronavirus infection. Studies have revealed the association of the IFNAR2 gene with severe illness in Coronavirus infection and indicated the association of genomic variants, i.e. single nucleotide polymorphisms (SNPs). However, comprehensive analysis of SNPs of the IFNAR2 gene has not been performed in both coding and non-coding region to find the causes of loss of function of IFNAR2 in COVID-19 patients. In this study, we have characterized coding SNPs (nsSNPs) of IFNAR2 gene using different bioinformatics tools and identified deleterious SNPs. We found 9 nsSNPs as pathogenic and disease-causing along with a decrease in protein stability. We employed molecular docking analysis that showed 5 nsSNPs to decrease binding affinity to IFN. Later, MD simulations showed that P136R mutant may destabilize crucial binding with the IFN molecule in response to COVID-19. Thus, P136R is likely to have a high impact on disrupting the structure of the IFNAR2 protein. GTEx portal analysis predicted 14 sQTLs and 5 eQTLs SNPs in lung tissues hampering the post-transcriptional modification (splicing) and altering the expression of the IFNAR2 gene. sQTLs and eQTLs SNPs potentially explain the reduced IFNAR2 production leading to severe diseases. These mutants in the coding and non-coding region of the IFNAR2 gene can help to recognize severe illness due to COVID 19 and consequently assist to develop an effective drug against the infection.Communicated by Ramaswamy H. Sarma.

5.
Front Genet ; 13: 1028081, 2022.
Article in English | MEDLINE | ID: covidwho-2260364

ABSTRACT

Background: Development and worldwide availability of safe and effective vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) to fight severe symptoms of coronavirus disease 2019 (COVID-19) and block the pandemic have been a great achievement and stimulated researchers on understanding the efficacy and duration of different vaccine types. Methods: We investigated the levels of anti-SARS-CoV-2 antibodies (IgG) and neutralizing antibodies (NAbs) in 195 healthy adult subjects belonging to the staff of the University-Hospital of Ferrara (Italy) starting from 15 days up to 190 days (about 6 months) after the second dose of the BNT162b2 (Pfizer-BioNTech) mRNA-based vaccine (n = 128) or ChAdOx1 (AstraZeneca) adenovirus-based vaccine (n = 67) using a combined approach of serological and genomics investigations. Results: A strong correlation between IgG and NAb levels was detected during the 190 days of follow-up (r 2 = 0.807; p < 0.0001) and was confirmed during the first 90 days (T1) after vaccination (r 2 = 0.789; p = 0.0001) and 91-190 days (T2) after vaccination (r 2 = 0.764; p = 0.0001) for both vaccine types (r 2 = 0.842; p = 0.0001 and r 2 = 0.780; p = 0.0001 for mRNA- and adenovirus-based vaccine, respectively). In addition to age (p < 0.01), sex (p = 0.03), and type of vaccine (p < 0.0001), which partially accounted for the remarkable individual differences observed in the antibody levels and dynamics, interesting genetic determinants appeared as significant modifiers of both IgG and NAb responses among the selected genes investigated (TP53, rs1042522; APOE, rs7412/rs429358; ABO, rs657152; ACE2, rs2285666; HLA-A rs2571381/rs2499; CRP, rs2808635/rs876538; LZTFL1, rs35044562; OAS3, rs10735079; SLC6A20, rs11385942; CFH, rs1061170; and ACE1, ins/del, rs4646994). In detail, regression analysis and mean antibody level comparison yielded appreciable differences after genotype stratification (P1 and P2, respectively, for IgG and NAb distribution) in the whole cohort and/or in the mRNA-based vaccine in the following genes: TP53, rs1042522 (P1 = 0.03; P2 = 0.04); ABO, rs657152 (P1 = 0.01; P2 = 0.03); APOE, rs7412/rs429358 (P1 = 0.0018; P2 = 0.0002); ACE2, rs2285666 (P1 = 0.014; P2 = 0.009); HLA-A, rs2571381/rs2499 (P1 = 0.02; P2 = 0.03); and CRP, rs2808635/rs876538 (P1 = 0.01 and P2 = 0.09). Conclusion: High- or low-responsive subjects can be identified among healthy adult vaccinated subjects after targeted genetic screening. This suggests that favorable genetic backgrounds may support the progression of an effective vaccine-induced immune response, though no definite conclusions can be drawn on the real effectiveness ascribed to a specific vaccine or to the different extent of a genotype-driven humoral response. The interplay between data from the polygenic predictive markers and serological screening stratified by demogeographic information can help to recognize the individual humoral response, accounting for ethnic and geographical differences, in both COVID-19 and anti-SARS-CoV-2 vaccinations.

6.
Gene ; 865: 147325, 2023 May 20.
Article in English | MEDLINE | ID: covidwho-2273911

ABSTRACT

COVID-19 has a broad spectrum of clinical manifestations. We assessed the impact of single nucleotide polymorphisms (SNPs) of inflammasome genesas risk factors for progression toCOVID-19 critical outcomes, such as mechanical ventilation support (MVS) or death.The study included 451 hospitalized individuals followed up at the INI/FIOCRUZ, Rio de Janeiro, Brazil, from 06/2020 to 03/2021. SNPs genotyping was determined by Real-Time PCR. We analyzed risk factors for progression to MVS (n = 174[38.6 %]) or death (n = 175[38.8 %])as a result of COVID-19 by Cox proportional hazardmodels.Slower progression toMVSwas associated with allele G (aHR = 0.66;P = 0.005) or the genotype G/G (aHR = 0.391;P = 0.006) in the NLRP3 rs10754558 or the allele G (aHR = 0.309;P = 0.004) in the IL1ßrs1143634, while C allele in the NLRP3 rs4612666 (aHR = 2.342;P = 0.006) or in the rs10754558 (aHR = 2.957;P = 0.005) were associated with faster progression to death. Slower progression to death was associated to allele G (aHR = 0.563;P = 0.006) or the genotype A/G (aHR = 0.537;P = 0.005) in the CARD8 rs6509365; the genotype A/C in the IFI16 rs1101996 (aHR = 0.569;P = 0.011); the genotype T/T (aHR = 0.394;P = 0.004) or allele T (aHR = 0.68;P = 0.006) in the NLRP3 rs4612666, and the genotype G/G (aHR = 0.326;P = 0.005) or allele G (aHR = 0,68;P = 0.014) in the NLRP3 rs10754558. Our results suggest that inflammasome genetic variations might influence the critical clinical course of COVID-19.


Subject(s)
COVID-19 , Inflammasomes , Humans , Brazil/epidemiology , CARD Signaling Adaptor Proteins/genetics , COVID-19/genetics , Genetic Predisposition to Disease , Genotype , Inflammasomes/genetics , Neoplasm Proteins/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Polymorphism, Single Nucleotide , Respiration, Artificial
7.
Immunobiology ; 228(2): 152351, 2023 03.
Article in English | MEDLINE | ID: covidwho-2245868

ABSTRACT

We have attempted to explore further the involvement of complement components in the host COVID-19 (Coronavirus disease-19) immune responses by targeted genotyping of COVID-19 adult patients and analysis for missense coding Single Nucleotide Polymorphisms (coding SNPs) of genes encoding Alternative pathway (AP) components. We have identified a small group of common coding SNPs in Survivors and Deceased individuals, present in either relatively similar frequencies (CFH and CFI SNPs) or with stark differences in their relative abundance (C3 and CFB SNPs). In addition, we have identified several sporadic, potentially protective, coding SNPs of C3, CFB, CFD, CFH, CFHR1 and CFI in Survivors. No coding SNPs were detected for CD46 and CD55. Our demographic analysis indicated that the C3 rs1047286 or rs2230199 coding SNPs were present in 60 % of all the Deceased patients (n = 25) (the rs2230199 in 67 % of all Deceased Males) and in 31 % of all the Survivors (n = 105, p = 0.012) (the rs2230199 in 25 % of all Survivor Males). When we analysed these two major study groups using the presence of the C3 rs1047286 or rs2230199 SNPs as potential biomarkers, we noticed the complete absence of the protective CFB rs12614 and rs641153 coding SNPs from Deceased Males compared to Females (p = 0.0023). We propose that in these individuals, C3 carrying the R102G and CFB lacking the R32W or the R32Q amino acid substitutions, may contribute to enhanced association dynamics of the C3bBb AP pre-convertase complex assembly, thus enabling the exploitation of the activation of the Complement Alternative pathway (AP) by SARS-CoV-2.


Subject(s)
COVID-19 , Macular Degeneration , Male , Female , Humans , Complement Factor B/genetics , Complement C3/genetics , Polymorphism, Single Nucleotide , Genotype , Macular Degeneration/genetics , Complement Factor H/genetics , SARS-CoV-2 , Complement C2/genetics
8.
Vaccines (Basel) ; 11(2)2023 Feb 10.
Article in English | MEDLINE | ID: covidwho-2235372

ABSTRACT

The introduction of anti-SARS-CoV-2 vaccines in late 2020 substantially changed the pandemic picture, inducing effective protection in the population. However, individual variability was observed with different levels of cellular response and neutralizing antibodies. We report data on the impact of age, gender, and 16 single nucleotide polymorphisms (SNPs) of cytokine genes on the anti-SARS-CoV-2 IgG titers measured 31 and 105 days after administration of the second dose of BNT162b2 vaccine to 122 healthy subjects from the health care staff of the Palermo University Hospital, Italy. The higher titers at 31 days were measured in the younger subjects and in subjects bearing T-positive genotypes of IL-1R1 rs2234650 or the GG homozygous genotype of IL-6 rs1800795 SNP. T-positive genotypes are also significantly more common in subjects with higher titers at day 105. In addition, in this group of subjects, the frequency of the CT genotype of IL-4 rs2243250 is higher among those vaccinated with higher titers. Moreover, these SNPs and TNFA rs1800629 are differently distributed in a group of subjects that were found infected by SARS-CoV-2 at day 105 of evaluation. Finally, subjects that were found to be infected by SARS-CoV-2 at day 105 were significantly older than the uninfected subjects. Taken together, these data seem to suggest that age and polymorphisms of key cytokines, which regulate inflammation and humoral immune response, might influence the magnitude of the antibody response to vaccination with BNT162B2, prompting speculation about the possible benefit of a genetic background-based assessment of a personalized approach to the anti-COVID vaccination schedule.

9.
Front Cell Infect Microbiol ; 13: 1080100, 2023.
Article in English | MEDLINE | ID: covidwho-2227423

ABSTRACT

Introduction: Tuberculosis (TB) is now the 2nd leading infectious killer after COVID-19 and the 13th leading cause of death worldwide. Moreover, TB is a lethal combination for HIV-patients. Th1 responses and particularly IFN-γ are crucial for immune protection against Mycobacterium tuberculosis infection. Many gene variants for IFNG that confer susceptibility to TB have been described in multiple ethnic populations. Likewise, some epigenetic modifications have been evaluated, being CpG methylation the major epigenetic mark that makes chromatin inaccessible to transcription factors, thus avoiding the initiation of IFNG transcription. Methods: We evaluated both genetic and epigenetic changes involved in IFN-γ production and TB susceptibility in Argentine population. Amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) was performed for the IFN-γ +874 A/T polymorphism (rs2430561) genotyping in 199 healthy donors (HD) and 173 tuberculosis (TB) patients. IFN-γ levels from M. tuberculosis-stimulated PBMCs were measured by ELISA. The methylation status at the -53 CpG site of the IFNG promoter in individuals with latent infection (LTBI), TB and HD was determine by pyrosequencing. Results: Using a case-control study, we found that A allele and, consequently, AA genotype were overrepresented in patients with active disease. Moreover, HD carrying T allele (AT or TT genotype) evidenced an augmented IFN-γ secretion compared to TB patients. Codominance was the genetic model that best fits our results according to the Akaike information criterion (AIC). In addition, increased methylation levels at the -53 CpG site in the IFN-γ promoter were observed in whole blood of patients with active TB compared to LTBI individuals. Discussion: IFN-γ is regulated by genetic variants and epigenetic modifications during TB. Besides, AA genotype of the rs2430561 single nucleotide polymorphism could be considered as a potential TB susceptibility genetic biomarker in Argentina and the methylation of the -53 CpG site could result in a useful predictor of TB reactivation.


Subject(s)
COVID-19 , Interferon-gamma , Mycobacterium tuberculosis , Tuberculosis , Humans , Case-Control Studies , Genetic Predisposition to Disease , Genotype , Interferon-gamma/genetics , Polymorphism, Single Nucleotide , Tuberculosis/genetics
10.
Int J Immunogenet ; 2022 Nov 02.
Article in English | MEDLINE | ID: covidwho-2236636

ABSTRACT

Coronavirus disease-2019 (COVID-19) is pro-inflammatory disorder characterized by acute respiratory distress syndrome. Interleukin-6, a cytokine secreted by macrophages, which mediates an inflammatory response, is frequently increased and associated with the severity in COVID-19 patients. The differential expression of IL6 cytokine in COVID-19 patients may be associated with the presence of single nucleotide polymorphisms (SNPs) in regulatory region of cytokine genes. The aim of this study is to investigate the role of two promoter polymorphisms of the IL6 gene (-597G > A and -174G > C) with the severity of COVID-19. The study included 242 patients, out of which 97 patients with severe symptoms and 145 patients with mild symptoms of COVID-19. Genotyping of two selected SNPs, rs1800795 (-174G > C) and rs1800797 (-597G > A) of promoter region of IL6 gene, was performed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). In our study, individuals with GC genotypes of IL6 (-174G > C) polymorphism showed significantly higher risk of severity [adjusted odds (OR) 3.86, p <.001] but we did not observe any association of COVID-19 severity with rs1800797 (-597G > A) polymorphism. The COVID-19 severity was significantly higher in individuals having 'C' allele of IL6 (-174G > C) polymorphism (p = .014). Linkage disequilibrium between rs1800795 (-174G > C) and rs1800797 (-597G > A) showed that individuals having AC* haplotype significantly association with COVID-19 severity (p = .034). Our results suggest that 'C' allele of rs1800795 (-174G > C) polymorphism of IL6 may be the risk allele for severity of COVID-19 in North Indian population.

11.
Viruses ; 15(2)2023 01 23.
Article in English | MEDLINE | ID: covidwho-2216957

ABSTRACT

The Omicron variant is currently ravaging the world, raising serious concern globally. Monitoring genomic variations and determining their influence on biological features are critical for tracing its ongoing transmission and facilitating effective measures. Based on large-scale sequences from different continents, this study found that: (i) The genetic diversity of Omicron is much lower than that of the Delta variant. Still, eight deletions (Del 1-8) and 1 insertion, as well as 130 SNPs, were detected on the Omicron genomes, with two deletions (Del 3 and 4) and 38 SNPs commonly detected on all continents and exhibiting high-occurring frequencies. (ii) Four groups of tightly linked SNPs (linkage I-IV) were detected, among which linkage I, containing 38 SNPs, with 6 located in the RBD, increased its occurring frequency remarkably over time. (iii) The third codons of the Omicron shouldered the most mutation pressures, while the second codons presented the least flexibility. (iv) Four major mutants with amino acid substitutions in the RBD were detected, and further structural analysis suggested that the substitutions did not alter the viral receptor binding ability greatly. It was inferred that though the Omicron genome harbored great changes in antigenicity and remarkable ability to evade immunity, it was immune-pressure selected. This study tracked mutational signatures of Omicron variant and the potential biological significance of the SNPs, and the linkages await further functional verification.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Mutation , Amino Acid Substitution
12.
Journal of Applied and Natural Science ; 14(4):1246-1251, 2022.
Article in English | Scopus | ID: covidwho-2205752

ABSTRACT

Angiotensin-converting enzyme-2 (ACE-2) is an essential element in the renin-angiotensin RAS system and plays a key role in coronavirus entrance to the human body and attachment to the cell. Variation in ACE-2 may increase the capability of coronavirus to binding with human tissues and lead to variation in disease severity among patients. For this reason, this study aimed to take some SNPs in different COVID-19 patient cases to show the possible role of Angiotensin-Converting Enzyme-2 (ACE2) polymorphism in people that could have severe infections caused by SARS-CoV-2 by detecting different single nucleotide polymorphisms SNPs on this gene by PCR-sequencing. This cross-sectional study includes 100 diagnosed COVID-19 patients during a period between November and December 2021. The result revealed that three SNPs rs1463669655, rs746202722, and rs201035388 located on ACE-2 (GRCh38.p13) gene did not associate with the severity of COVID-19 disease because all patients have either the wildtype or the heteterotype allele as the following 0 % GG, 100 % AG, and 0% AA as the genotype distribution in severe cases, and the genotype distribution in non-severe cases was 0 % GG, 100 %AG, and 0 % AA and 100 % AA, 0 % AG, and 0% GG as the genotype distribution in severe cases, and the genotype distribution in non-severe cases was 100 % AA, 0 %AG, and 0 % GG and 100 % GG, 0 % GA, and 0% AA as the genotype distribution in severe cases, and the genotype distribution in non-severe cases was 100 % GG, 0 %GA, and 0 % AA for these three SNPs respectively. The ACE-2 angiotensin-converting enzyme gene was studied because of its active participation in the entry of the Coronavirus into the human body and its binding to alveolar cells and concluded that three SNPs rs1463669655, rs746202722, and rs201035388 located on ACE-2(GRCh38.p13) gene did not associate with the severity of COVID-19 disease. © Author (s). Publishing rights @ ANSF.

13.
Front Immunol ; 13: 1008463, 2022.
Article in English | MEDLINE | ID: covidwho-2198868

ABSTRACT

Background: A deep understanding of the causes of liability to SARS-CoV-2 is essential to develop new diagnostic tests and therapeutics against this serious virus in order to overcome this pandemic completely. In the light of the discovered role of antimicrobial peptides [such as human b-defensin-2 (hBD-2) and cathelicidin LL-37] in the defense against SARS-CoV-2, it became important to identify the damaging missense mutations in the genes of these molecules and study their role in the pathogenesis of COVID-19. Methods: We conducted a comprehensive analysis with multiple in silico approaches to identify the damaging missense SNPs for hBD-2 and LL-37; moreover, we applied docking methods and molecular dynamics analysis to study the impact of the filtered mutations. Results: The comprehensive analysis reveals the presence of three damaging SNPs in hBD-2; these SNPs were predicted to decrease the stability of hBD-2 with a damaging impact on hBD-2 structure as well. G51D and C53G mutations were located in highly conserved positions and were associated with differences in the secondary structures of hBD-2. Docking-coupled molecular dynamics simulation analysis revealed compromised binding affinity for hBD-2 SNPs towards the SARS-CoV-2 spike domain. Different protein-protein binding profiles for hBD-2 SNPs, in relation to their native form, were guided through residue-wise levels and differential adopted conformation/orientation. Conclusions: The presented model paves the way for identifying patients prone to COVID-19 in a way that would guide the personalization of both the diagnostic and management protocols for this serious disease.


Subject(s)
COVID-19 , beta-Defensins , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Antimicrobial Cationic Peptides/metabolism , beta-Defensins/genetics , beta-Defensins/metabolism , COVID-19/genetics , Cathelicidins
14.
Influenza Other Respir Viruses ; 17(1): e13083, 2023 01.
Article in English | MEDLINE | ID: covidwho-2161655

ABSTRACT

BACKGROUND: COVID-19 prevalence has remained high throughout the pandemic with intermittent surges, due largely to the emergence of genetic variants, demonstrating the need for more accessible sequencing technologies for strain typing. METHODS: A ligation-based typing assay was developed to detect known variants of severe acute respiratory syndrome virus 2 (SARS-CoV-2) by identifying the presence of characteristic single-nucleotide polymorphisms (SNPs). General principles for extending the strategy to new variants and alternate diseases with SNPs of interest are described. Of note, this strategy leverages commercially available reagents for assay preparation, as well as standard real-time polymerase chain reaction (PCR) instrumentation for assay performance. RESULTS: The assay demonstrated a combined sensitivity and specificity of 96.6% and 99.5%, respectively, for the classification of 88 clinical samples of the Alpha, Delta, and Omicron variants relative to the gold standard of viral genome sequencing. It achieved an average limit of detection of 7.4 × 104 genome copies/mL in contrived nasopharyngeal samples. The ligation-based strategy performed robustly in the presence of additional polymorphisms in the targeted regions of interest as shown by the sequence alignment of clinical samples. CONCLUSIONS: The assay demonstrates the potential for robust variant typing with performance comparable with next-generation sequencing without the need for the time delays and resources required for sequencing. The reduced resource dependency and generalizability could expand access to variant classification information for pandemic surveillance.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , High-Throughput Nucleotide Sequencing , Genome, Viral
15.
Biomedicine (India) ; 42(5):1034-1039, 2022.
Article in English | EMBASE | ID: covidwho-2114793

ABSTRACT

Introduction and Aim: Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Once infected this virus induces several clinical disorders in humans. SARSCoV-2 enters cells via TMPRSS2. Genetic variation in TMPRSS2 could affect the severity of infection. The purpose of this study was to investigate how the (TMPRSS2) gene polymorphism affected COVID-19 severity in patients as well as the effect of age and comorbidities on infection. Material(s) and Method(s): This cross-sectional analytical study comprised of 400 (185 male, 215 female) Covid-19-infected patients between ages 18-65 receiving treatment in hospitals at Baghdad, Iraq. The patients were divided into three groups: mild, moderate, and severe based on the severity of Covid-19 infection. Baseline data was collected for each patient through interview and questionnaire. Blood collected from patients was subjected to DNA extraction and detecting polymorphisms within SNPs of the TMPRSS2 gene. Result(s): The present investigation indicated higher age to be significantly associated with severe COVID-19 infection when compared to moderate and mild infection (36.14 +/- 12.716 vs. 48.52 +/- 17.513 vs. 59.26 +/- 16.035) (F= 3.697, df: 64, P= 0.000). Patients with comorbidities was associated with a greater rate of severe Covid-19 infection (74.2% vs. 25.8%). However, individuals without comorbidities had a considerably lower rate of mild and moderate Covid-19 infection (13.9% vs. 86.1%) and (36% vs. 64%), respectively (x

16.
Journal of Pharmaceutical Negative Results ; 13:537-545, 2022.
Article in English | Web of Science | ID: covidwho-2072524

ABSTRACT

Background: SARS-coronavirus 2 is the causative of the COVID-19 pandemic. (SARS-COV-2). There is a correlation between illness severity and cytokines of proinflammation such as interleukin-6 (IL-6). The amount of COVID-19 cytokine produced might be affected by polymorphisms in the regulatory areas in genes of cytokine. In this study, an Iraqi population was used to investigate a possible connection between three IL-6 promoter SNPs and COVID-19 susceptibility. Methods: The goal of this cohort study required the participation of a total of 97 individuals, 52 of whom had been diagnosed with severe COVID-19 and 45 of whom had been diagnosed with intermediate COVID-19. In order to determine the genotypes of three selected SNPs in the promoter region of the IL-6 gene, genomic DNA was extracted from the peripheral blood leukocytes of patients utilizing the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. This was done in order to establish a baseline for future research. These single nucleotide polymorphisms were denoted by the SNP names rs13306435 (T > A), rs2069860 (A > T), and rs2069830 (A > T). Results: There were no significant changes seen in the genotype or allele distribution of chosen SNPs of IL-6 gene in the promoter region between patients with severe levels of COVID-19 and patients with moderate levels of COVID-19. These SNPs included rs13306435 (-395 T > A), rs2069860 (-632A > T), and rs2069830 (-612A > T). Conclusion: According to the results of our investigation, these SNPs do not seem to be linked with the severity of COVID-19 in the Arabian community in Iraq.

17.
Comput Struct Biotechnol J ; 20: 5193-5202, 2022.
Article in English | MEDLINE | ID: covidwho-2004002

ABSTRACT

The coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health around the world. In-depth studies on the pathogenic mechanisms of SARS-CoV-2 is urgently necessary for pandemic prevention. However, most laboratory studies on SARS-CoV-2 have to be carried out in bio-safety level 3 (BSL-3) laboratories, greatly restricting the progress of relevant experiments. In this study, we used a bacterial artificial chromosome (BAC) method to assemble a SARS-CoV-2 replication and transcription system in Vero E6 cells without virion envelope formation, thus avoiding the risk of coronavirus exposure. Furthermore, an improved real-time quantitative reverse transcription PCR (RT-qPCR) approach was used to distinguish the replication of full-length replicon RNAs and transcription of subgenomic RNAs (sgRNAs). Using the SARS-CoV-2 replicon, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 facilitates the transcription of sgRNAs in the discontinuous synthesis process. Moreover, two high-frequency mutants of N protein, R203K and S194L, can obviously enhance the transcription level of the replicon, hinting that these mutations likely allow SARS-CoV-2 to spread and reproduce more quickly. In addition, remdesivir and chloroquine, two well-known drugs demonstrated to be effective against coronavirus in previous studies, also inhibited the transcription of our replicon, indicating the potential applications of this system in antiviral drug discovery. Overall, we developed a bio-safe and valuable replicon system of SARS-CoV-2 that is useful to study the mechanisms of viral RNA synthesis and has potential in novel antiviral drug screening.

18.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: covidwho-1985037

ABSTRACT

As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to scale, hampering rapid surveillance efforts and epidemiological investigations for disease control. Here, we introduce an accelerated, scalable, reproducible, and cost-effective framework for pathogen genomic variant identification and present an evaluation of its performance and accuracy across benchmark datasets of Plasmodium falciparum malaria genomes. We demonstrate superior performance of the GPU framework relative to standard pipelines with mean execution time and computational costs reduced by 27× and 4.6×, respectively, while delivering 99.9% accuracy at enhanced reproducibility.


Subject(s)
COVID-19 , Communicable Diseases , Malaria , COVID-19/epidemiology , COVID-19/genetics , Genomics/methods , Humans , Pandemics , Reproducibility of Results
19.
Microbiol Spectr ; 10(4): e0087022, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1938015

ABSTRACT

Severe acute respiratory syndrome coronavirus (SARS-CoV) and SARS-CoV-2 have a single envelope glycoprotein (S protein) that binds to human angiotensin-converting enzyme 2 (ACE2) on the host cell membrane. Previous mutational scanning studies have suggested that some substitutions corresponding to single nucleotide variants (SNVs) in human ACE2 affect the binding affinity to the receptor binding domain (RBD) of the SARS-CoV-2 S protein. However, the importance of these substitutions in actual virus infection is still unclear. In this study, we investigated the effects of the reported ACE2 SNV substitutions on the entry of SARS-CoV and SARS-CoV-2 into cells, using vesicular stomatitis Indiana virus (VSIV) pseudotyped with S proteins of these coronaviruses (CoVs). HEK293T cells transfected with plasmids expressing ACE2 having each SNV substitution were infected with the pseudotyped VSIVs and relative infectivities were determined compared to the cells expressing wild-type ACE2. We found that some of the SNV substitutions positively or negatively affected the infectivities of the pseudotyped viruses. Particularly, the H505R substitution significantly enhanced the infection with the pseudotyped VSIVs, including those having the substitutions found in the S protein RBD of SARS-CoV-2 variants of concern. Our findings suggest that human ACE2 SNVs may potentially affect cell susceptibilities to SARS-CoV and SARS-CoV-2. IMPORTANCE SARS-CoV and SARS-CoV-2 are known to cause severe pneumonia in humans. The S protein of these CoVs binds to the ACE2 molecule on the plasma membrane and mediates virus entry into cells. The interaction between the S protein and ACE2 is thought to be important for host susceptibility to these CoVs. Although previous studies suggested that some SNV substitutions in ACE2 might affect the binding to the S protein, it remains elusive whether these SNV substitutions actually alter the efficiency of the entry of SARS CoVs into cells. We analyzed the impact of the ACE2 SNVs on the cellular entry of SARS CoVs using pseudotyped VSIVs having the S protein on the viral surface. We found that some of the SNV substitutions positively or negatively affected the infectivities of the viruses. Our data support the notion that genetic polymorphisms of ACE2 may potentially influence cell susceptibilities to SARS CoVs.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , HEK293 Cells , Humans , Polymorphism, Genetic , Protein Binding , Receptors, Virus/genetics , Severe acute respiratory syndrome-related coronavirus/pathogenicity , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus
20.
Curr Issues Mol Biol ; 44(7): 2811-2824, 2022 Jun 28.
Article in English | MEDLINE | ID: covidwho-1911216

ABSTRACT

Complement dysregulation has been documented in adults with COVID-19 and implicated in relevant pediatric inflammatory responses against SARS-CoV-2. We propose that signatures of complement missense coding SNPs associated with dysregulation could also be identified in children with multisystem inflammatory syndrome (MIS-C). We investigated 71 pediatric patients with RT-PCR validated SARS-CoV-2 hospitalized in pediatric COVID-19 care units (November 2020-March 2021) in three major groups. Seven (7) patients suffered from MIS-C (MIS-C group), 32 suffered from COVID-19 and were hospitalized (admitted group), whereas 32 suffered from COVID-19, but were sent home. All patients survived and were genotyped for variations in the C3, C5, CFB, CFD, CFH, CFHR1, CFI, CD46, CD55, MASP1, MASP2, MBL2, COLEC11, FCN1, and FCN3 genes. Upon evaluation of the missense coding SNP distribution patterns along the three study groups, we noticed similarities, but also considerably increased frequencies of the alternative pathway (AP) associated with SNPs rs12614 CFB, rs1061170, and rs1065489 CFH in the MIS-C patients. Our analysis suggests that the corresponding substitutions potentially reduce the C3b-inactivation efficiency and promote slower and weaker AP C3bBb pre-convertase assembly on virions. Under these circumstances, the complement AP opsonization capacity may be impaired, leading to compromised immune clearance and systemic inflammation in the MIS-C syndrome.

SELECTION OF CITATIONS
SEARCH DETAIL